The increasing attention paid to the environment has led to a reduction in the emissions from wastewater treatment plants (WWTPs). Moreover, the increasing interest in the greenhouse gas (GHG) emissions from WWTPs suggests that we reconsider the traditional tools used for designing and managing WWTPs. Indeed, nitrous oxide, carbon dioxide and methane can be emitted from wastewater treatment, significantly contributing to the greenhouse gas (GHG) footprint. The reduction of energy consumption as well as GHG emission are of particular concern for large WWTPs which treat the majority of wastewater in terms of both volume and pollution load. Nowadays, there is an increasing need to develop new tools that include additional performance indicators related to GHG emissions and energy consumption as well as traditional effluent quality parameters. Energy consumption, in fact, can be considered as an indirect source of GHGs. This paper presents the development of an ongoing research project aiming at setting-up an innovative mathematical model platform for the design and management of WWTPs. The final goal of the project by means of this platform is to minimize the environmental impact of WWTPs through their optimization in terms of energy consumptions and emissions, which can be regarded as discharged pollutants, sludge and GHGs.
CITATION STYLE
Caniani, D., Esposito, G., Gori, R., & Mannina, G. (2015). Towards a new decision support system for design, management and operation of wastewater treatment plants for the reduction of greenhouse gases emission. Water (Switzerland), 7(10), 5599–5616. https://doi.org/10.3390/w7105599
Mendeley helps you to discover research relevant for your work.