Prediction of bioluminescent proteins using auto covariance transformation of evolutional profiles

15Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Bioluminescent proteins are important for various cellular processes, such as gene expression analysis, drug discovery, bioluminescent imaging, toxicity determination, and DNA sequencing studies. Hence, the correct identification of bioluminescent proteins is of great importance both for helping genome annotation and providing a supplementary role to experimental research to obtain insight into bioluminescent proteins' functions. However, few computational methods are available for identifying bioluminescent proteins. Therefore, in this paper we develop a new method to predict bioluminescent proteins using a model based on position specific scoring matrix and auto covariance. Tested by 10-fold cross-validation and independent test, the accuracy of the proposed model reaches 85.17% for the training dataset and 90.71% for the testing dataset respectively. These results indicate that our predictor is a useful tool to predict bioluminescent proteins. This is the first study in which evolutionary information and local sequence environment information have been successfully integrated for predicting bioluminescent proteins. A web server (BLPre) that implements the proposed predictor is freely available. © 2012 by the authors.

Cite

CITATION STYLE

APA

Zhao, X., Li, J., Huang, Y., Ma, Z., & Yin, M. (2012). Prediction of bioluminescent proteins using auto covariance transformation of evolutional profiles. International Journal of Molecular Sciences, 13(3), 3650–3660. https://doi.org/10.3390/ijms13033650

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free