Integrating genetic and network analysis to characterize genes related to mouse weight

287Citations
Citations of this article
440Readers
Mendeley users who have this article in their library.

Abstract

Systems biology approaches that are based on the genetics of gene expression have been fruitful in identifying genetic regulatory loci related to complex traits. We use microarray and genetic marker data from an F2 mouse intercross to examine the large-scale organization of the gene co-expression network in liver, and annotate several gene modules in terms of 22 physiological traits. We identify chromosomal loci (referred to as module quantitative trait loci, mQTL) that perturb the modules and describe a novel approach that integrates network properties with genetic marker information to model gene/trait relationships. Specifically, using the mQTL and the intramodular connectivity of a body weight-related module, we describe which factors determine the relationship between gene expression profiles and weight. Our approach results in the identification of genetic targets that influence gene modules (pathways) that are related to the clinical phenotypes of interest. © 2006 Ghazalpour et al.

Cite

CITATION STYLE

APA

Ghazalpour, A., Doss, S., Zhang, B., Wang, S., Plaisier, C., Castellanos, R., … Horvath, S. (2006). Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genetics, 2(8), 1182–1192. https://doi.org/10.1371/journal.pgen.0020130

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free