Cd-Zn-Te ternary alloyed semiconductor compounds are key materials in radiation detection and photovoltaic applications. Currently, crystalline defects such as dislocations limit the performance of these materials. Atomistic simulations are a powerful method for exploring crystalline defects at a resolution unattainable by experimental techniques. To enable accurate atomistic simulations of defects in the Cd-Zn-Te systems, we develop a full Cd-Zn-Te ternary bond-order potential. This Cd-Zn-Te potential has numerous unique advantages over other potential formulations: (1) It is analytically derived from quantum mechanical theories and is therefore more likely to be transferable to environments that are not explicitly tested. (2) A variety of elemental and compound configurations (with coordination varying from 1 to 12) including small clusters, bulk lattices, defects, and surfaces are explicitly considered during parameterization. As a result, the potential captures structural and property trends close to those seen in experiments and quantum mechanical calculations and provides a good description of melting temperature, defect characteristics, and surface reconstructions. (3) Most importantly, this potential is validated to correctly predict the crystalline growth of the ground-state structures for Cd, Zn, Te elements as well as CdTe, ZnTe, and Cd1-xZnxTe compounds during highly challenging molecular dynamics vapor deposition simulations. © 2012 American Physical Society.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Ward, D. K., Zhou, X. W., Wong, B. M., Doty, F. P., & Zimmerman, J. A. (2012). Analytical bond-order potential for the Cd-Zn-Te ternary system. Physical Review B - Condensed Matter and Materials Physics, 86(24). https://doi.org/10.1103/PhysRevB.86.245203