Abstract
Background:Breast cancer stem cells (BCSCs) are characterized by high aldehyde dehydrogenase (ALDH) enzyme activity and are refractory to current treatment modalities, show a higher risk for metastasis, and influence the epithelial to mesenchymal transition (EMT), leading to a shorter time to recurrence and death. In this study, we focused on examination of the mechanism of action of a small herbal molecule, psoralidin (Pso) that has been shown to effectively suppress the growth of BSCSs and breast cancer cells (BCCs), in breast cancer (BC) models.Methods:ALDH-and ALDH + BCCs were isolated from MDA-MB-231 cells, and the anticancer effects of Pso were measured using cell viability, apoptosis, colony formation, invasion, migration, mammosphere formation, immunofluorescence, and western blot analysis.Results:Psoralidin significantly downregulated NOTCH1 signaling, and this downregulation resulted in growth inhibition and induction of apoptosis in both ALDH-and ALDH + cells. Molecularly, Pso inhibited NOTCH1 signaling, which facilitated inhibition of EMT markers (β-catenin and vimentin) and upregulated E-cadherin expression, resulting in reduced migration and invasion of both ALDH-and ALDH + cells.Conclusion:Together, our results suggest that inhibition of NOTCH1 by Pso resulted in growth arrest and inhibition of EMT in BCSCs and BCCs. Psoralidin appears to be a novel agent that targets both BCSCs and BCCs. © 2013 Cancer Research UK. All rights reserved.
Cite
CITATION STYLE
Suman, S., Das, T. P., & Damodaran, C. (2013). Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. British Journal of Cancer, 109(10), 2587–2596. https://doi.org/10.1038/bjc.2013.642
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.