Effect Of Al3 Inclusion on Characterization Exploration, Magnetic and Anti Cancer Properties of Cobalt Ferrite Nanoparticles Synthesised by Co Precipitation Process

  • et al.
N/ACitations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In (CoFe2O4 ) nanoparticles are widely utilized in electronics and biomedicine. Undoped and Al doped cobalt ferrite nanoparticles were manufactured through cost operative co-precipitation process. X-ray diffraction analysis (XRD) showed single cubic phase of cobalt ferrite and a constant reduction of the lattice constant upon aluminum content. The scanning electron microscope (SEM) analysis acquired the uniform scale dispersion of the well crystallized grains. Optical band gaps (Eg ) were observed utilizing Transmittance spectra. Photo Luminescence (PL) studies displayed wide emission peak of energy 3.45 eV, credited to the charge recombination that is attributable to deep traps and lattice faults of confined surface states. Raman analysis proved the stretching of metal oxygen, active vibration of metal cation and bending vibrations. The vibrating sample magnetometry (VSM) analysis showed the coercivity (Hc ) and the saturation magnetization (Ms ) decline upon an rise in aluminum content. Cytotoxicity studies proved so as to the anticancer attributes of cobalt ferrite nanoparticles..

Cite

CITATION STYLE

APA

Sobana, S. … Sivakumar, P. (2020). Effect Of Al3 Inclusion on Characterization Exploration, Magnetic and Anti Cancer Properties of Cobalt Ferrite Nanoparticles Synthesised by Co Precipitation Process. International Journal of Engineering and Advanced Technology, 9(3), 4191–4198. https://doi.org/10.35940/ijeat.c5730.029320

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free