Predicting Soil Organic Carbon Content Using Hyperspectral Remote Sensing in a Degraded Mountain Landscape in Lesotho

35Citations
Citations of this article
84Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Soil organic carbon constitutes an important indicator of soil fertility. The purpose of this study was to predict soil organic carbon content in the mountainous terrain of eastern Lesotho, southern Africa, which is an area of high endemic biodiversity as well as an area extensively used for small-scale agriculture. An integrated field and laboratory approach was undertaken, through measurements of reflectance spectra of soil using an Analytical Spectral Device (ASD) FieldSpecĀ® 4 optical sensor. Soil spectra were collected on the land surface under field conditions and then on soil in the laboratory, in order to assess the accuracy of field spectroscopy-based models. The predictive performance of two different statistical models (random forest and partial least square regression) was compared. Results show that random forest regression can most accurately predict the soil organic carbon contents on an independent dataset using the field spectroscopy data. In contrast, the partial least square regression model overfits the calibration dataset. Important wavelengths to predict soil organic contents were localised around the visible range (400-700 nm). This study shows that soil organic carbon can be most accurately estimated using derivative field spectroscopy measurements and random forest regression.

Cite

CITATION STYLE

APA

Bangelesa, F., Adam, E., Knight, J., Dhau, I., Ramudzuli, M., & Mokotjomela, T. M. (2020). Predicting Soil Organic Carbon Content Using Hyperspectral Remote Sensing in a Degraded Mountain Landscape in Lesotho. Applied and Environmental Soil Science, 2020. https://doi.org/10.1155/2020/2158573

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free