Studying the fatigue life of a non-pneumatic wheel by using finite-life design for life prediction

23Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

To avoid pneumatic tire puncture, blow-out and other problems, a new type of non-pneumatic safety wheel called the mechanical elastic wheel (ME-Wheel) has been developed and investigated. The durability of the ME-Wheel is studied to improve its life; at the same time, the best preventive maintenance period can also be provided for the users, to ensure the safety and reliability of the ME-Wheel in operating conditions. The finite-life design method is proposed to predict the ME-Wheel life; the weakest component of ME-Wheel is ascertained by analysing its structure static strength, and the predicted model of pin for lifetime theory is established by using finite-life design method. Furthermore, the ME-Wheel durability is simulated using the finite element method (FEM) on the basis of the established virtual proving ground, and the enhancement coefficient is combined to calculate ME-Wheel lifespan. Finally, the results of theoretical calculation and simulation are verified using endurable road testing. The results show that the methods of theoretical calculation and simulation, which are applied in our paper to predict the lifespan of ME-Wheel, are highly congruent with the experimental results. Therefore, the proposed method is also entirely suitable for other mechanical structures in the durability research field.

Cite

CITATION STYLE

APA

Xiao, Z., Zhao, Y. Q., Lin, F., Zhu, M. M., & Deng, Y. J. (2018). Studying the fatigue life of a non-pneumatic wheel by using finite-life design for life prediction. Journal of Mechanical Engineering, 64(1), 56–67. https://doi.org/10.5545/sv-jme.2017.4695

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free