The thioredoxin-like protein rod-derived cone viability factor (RdCVFL) interacts with TAU and inhibits its phosphorylation in the retina

52Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Rod-derived cone viability factor (RdCVF) is produced by the Nxnl1 gene that codes for a second polypeptide, RdCVFL, by alternative splicing. Although the role of RdCVF in promoting cone survival has been described, the implication of RdCVFL, a putative thioredoxin enzyme, in the protection of photoreceptors is presently unknown. Using a proteomics approach we identified 90 proteins interacting with RdCVFL including the microtubule-binding protein TAU. We demonstrate that the level of phosphorylation of TAU is increased in the retina of the Nxnl1-/- mice as it is hyperphosphorylated in the brain of patients suffering from Alzheimer disease, presumably in some cases through oxidative stress. Using a cell-based assay, we show that RdCVFL inhibits TAU phosphorylation. In vitro, RdCVFL protects TAU from oxidative damage. Photooxidative stress is implicated in retinal degeneration, particularly in retinitis pigmentosa, where it is considered to be a contributor to secondary cone death. The functional interaction between RdCVFL and TAU described here is the first characterization of the RdCVFL signaling pathway involved in neuronal cell death mediated by oxidative stress. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Fridlich, R., Delalande, F., Jaillard, C., Lu, J., Poidevin, L., Cronin, T., … Léveillard, T. (2009). The thioredoxin-like protein rod-derived cone viability factor (RdCVFL) interacts with TAU and inhibits its phosphorylation in the retina. Molecular and Cellular Proteomics, 8(6), 1206–1218. https://doi.org/10.1074/mcp.M800406-MCP200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free