Abstract
Caldesmon, a narrow, elongated actin-binding protein, is found in both nonmuscle and smooth muscle cells. It inhibits actomyosin ATPase and filament severing in vitro, and is thus a putative regulatory protein. To elucidate its function, we have used electron microscopy and three-dimensional image reconstruction to reveal the location of caldesmon on isolated smooth muscle thin filaments. Caldesmon density was clearly delineated in reconstructions and found to occur peripherally, on the extreme outer edge of actin subdomains-1 and 2, without making obvious contacts with tropomyosin strands on the inner domains of actin. When the reconstructions were fitted to the atomic model of F-actin, caldesmon appeared to cover potentially weak sites of myosin interaction with actin, while, together with tropomyosin, it flanked strong sites of myosin interaction without covering them. These interactions are unlike those of troponin-tropomyosin and therefore inhibition of actomyosin ATPase by caldesmon-tropomyosin and by troponin-tropomyosin cannot occur in the same way. The location of caldesmon would allow it to compete with a number of cellular actin-binding proteins, including those known to sever or sequester actin.
Author supplied keywords
Cite
CITATION STYLE
Lehman, W., Vibert, P., & Craig, R. (1997, December 5). Visualization of caldesmon on smooth muscle thin filaments. Journal of Molecular Biology. Academic Press. https://doi.org/10.1006/jmbi.1997.1422
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.