Revisiting EmbodiedQa: A simple baseline and beyond

19Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In Embodied Question Answering (EmbodiedQA), an agent interacts with an environment to gather necessary information for answering user questions. Existing works have laid a solid foundation towards solving this interesting problem. But the current performance, especially in navigation, suggests that EmbodiedQA might be too challenging for the contemporary approaches. In this paper, we empirically study this problem and introduce 1) a simple yet effective baseline that achieves promising performance; 2) an easier and practical setting for EmbodiedQA where an agent has a chance to adapt the trained model to a new environment before it actually answers users questions. In this new setting, we randomly place a few objects in new environments, and upgrade the agent policy by a distillation network to retain the generalization ability from the trained model. On the EmbodiedQA v1 benchmark, under the standard setting, our simple baseline achieves very competitive results to the-state-of-the-art; in the new setting, we found the introduced small change in settings yields a notable gain in navigation.

Cite

CITATION STYLE

APA

Wu, Y., Jiang, L., & Yang, Y. (2020). Revisiting EmbodiedQa: A simple baseline and beyond. IEEE Transactions on Image Processing, 29, 3984–3992. https://doi.org/10.1109/TIP.2020.2967584

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free