Overproduction of Sch9 leads to its aggregation and cell elongation in saccharomyces cerevisiae

0Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

The Sch9 kinase of Saccharomyces cerevisiae is one of the major TOR pathway effectors and regulates diverse processes in the cell. Sch9 belongs to the AGC kinase family. In human, amplification of AGC kinase genes is connected with cancer. However, not much is known about the effects of Sch9 overproduction in yeast cells. To fill this gap, we developed a model system to monitor subcellular location and aggregation state of overproduced Sch9 or its regions fused to a fluorescent protein. With this system, we showed that Sch9- YFP forms detergent-resistant aggregates, and multiple protein regions are responsible for this. This finding corroborated the fact that Sch9- YFP is visualized as various fluorescent foci. In addition, we found that Sch9 overproduction caused cell elongation, and this effect was determined by its C-terminal region containing kinase domains. The constructs we present can be exploited to create superior yeast-based model systems to study processes behind kinase overproduction in cancers.

Cite

CITATION STYLE

APA

Drozdova, P., Lipaeva, P., Rogoza, T., Zhouravleva, G., & Bondarev, S. (2018). Overproduction of Sch9 leads to its aggregation and cell elongation in saccharomyces cerevisiae. PLoS ONE, 13(3). https://doi.org/10.1371/journal.pone.0193726

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free