Nanoscale Mapping of Ultrafast Magnetization Dynamics with Femtosecond Lorentz Microscopy

69Citations
Citations of this article
98Readers
Mendeley users who have this article in their library.

Abstract

Novel time-resolved imaging techniques for the investigation of ultrafast nanoscale magnetization dynamics are indispensable for further developments in light-controlled magnetism. Here, we introduce femtosecond Lorentz microscopy, achieving a spatial resolution below 100 nm and a temporal resolution of 700 fs, which gives access to the transiently excited state of the spin system on femtosecond timescales and its subsequent relaxation dynamics. We demonstrate the capabilities of this technique by spatiotemporally mapping the light-induced demagnetization of a single magnetic vortex structure and quantitatively extracting the evolution of the magnetization field after optical excitation. Tunable electron imaging conditions allow for an optimization of spatial resolution or field sensitivity, enabling future investigations of ultrafast internal dynamics of magnetic topological defects on a 10 nm length scale.

Cite

CITATION STYLE

APA

Rubiano Da Silva, N., Möller, M., Feist, A., Ulrichs, H., Ropers, C., & Schäfer, S. (2018). Nanoscale Mapping of Ultrafast Magnetization Dynamics with Femtosecond Lorentz Microscopy. Physical Review X, 8(3). https://doi.org/10.1103/PhysRevX.8.031052

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free