Planktic foraminifera are commonly used for first-order age control in deep-sea sediments from low-latitude regions based on a robust tropical–subtropical zonation scheme. Although multiple Neogene planktic foraminiferal biostratigraphic zonations for mid-latitude regions exist, quantification of diachroneity for the species used as datums to test paleobiogeographic patterns of origination and dispersal is lacking. Here, we update the age models for seven southwest-Pacific deep-sea sites using calcareous nannofossil and bolboform biostratigraphy and magnetostratigraphy, and use 11 sites between 37.9° N and 40.6° S in the western Pacific to correlate existing planktic foraminiferal biozonations and quantify the diachroneity of species used as datums. For the first time, northwest and southwest Pacific biozones are correlated and compared to the global tropical planktic foraminiferal biozonation. We find a high degree of diachroneity in the western Pacific, within and between the northwest and southwest regions, and between the western Pacific and the tropical zonation. Importantly, some datums that are found to be diachronous between regions have reduced diachroneity within regions. Much work remains to refine regional planktic foraminiferal biozonations and more fully understand diachroneity between the tropics and mid-latitudes. This study indicates that diachroneity is the rule for Late Neogene planktic foraminifera, rather than the exception, in mid-latitude regions.
CITATION STYLE
Lam, A. R., Crundwell, M. P., Leckie, R. M., Albanese, J., & Uzel, J. P. (2022). Diachroneity Rules the Mid-Latitudes: A Test Case Using Late Neogene Planktic Foraminifera across the Western Pacific. Geosciences (Switzerland), 12(5). https://doi.org/10.3390/geosciences12050190
Mendeley helps you to discover research relevant for your work.