Abstract
Expansion of a polyglutamine repeat in huntingtin causes Huntington's disease (HD). Although full-length huntingtin is predominantly distributed in the cytoplasm, N-terminal fragments of huntingtin with expanded polyglutamine tracts are able to accumulate in the nucleus and kill neurons through apoptotic pathways. Transgenic mice expressing N-terminal mutant huntingtin show intranuclear huntingtin accumulation and develop progressive neurological symptoms. Inhibiting caspase-1 can prolong the survival of these HD mice. How intranuclear huntingtin is associated with caspase activation and apoptosis is unclear. Here we report that intranuclear huntingtin induces the activation of caspase-3 and the release of cytochrome c from mitochondria in cultured cells. As a result, cells expressing intra-nuclear huntingtin undergo apoptosis. We show that intranuclear huntingtin increases the expression of caspase-1, which may in turn activate caspase-3 and trigger apoptosis. We propose that the increased level of caspase-1 induced by intranuclear huntingin contributes to HD-associated cell death.
Cite
CITATION STYLE
Li, S. H., Lam, S., Cheng, A. L., & Li, X. J. (2000). Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis. Human Molecular Genetics, 9(19), 2859–2867. https://doi.org/10.1093/hmg/9.19.2859
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.