A traveling wave thermoacoustic engine - Design and test

5Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The demand for clean, sustainable, and cost-effective energy continues to increase due to global population growth and the corresponding use of consumer products. The provision of heat to a thermoacoustic prime mover results in the generation of an acoustic wave that can be converted into electrical power. Thermoacoustic devices offer highly reliable and transportable power generation with low environmental impact using a variety of fuel sources. This paper focuses on the design and testing of a single-stage, traveling-wave, thermoacoustic engine. The system configuration, component design, and integration of sensors will be described. Performance testing and system analysis show that for a 300 W heat source, the thermoacoustic machine generates a 54 Hz acoustic wave with a thermal efficiency of 7.8%. The system's acoustic power output may be increased by 84% through improved heat exchanger design. Tuning of the acoustic system and optimization of the bi-directional turbine merit attention to realize an applicable waste heat energy harvesting system.

Cite

CITATION STYLE

APA

McGaughy, M., Wang, C., Boessneck, E., Salem, T., & Wagner, J. (2021). A traveling wave thermoacoustic engine - Design and test. ASME Letters in Dynamic Systems and Control, 1(3). https://doi.org/10.1115/1.4049528

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free