Optimal distribution of the optical intensity within a laser beam for optical wireless communications

15Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

This study is focused on analysing the optimal distribution of optical intensity within a radiated laser beam at a transmitter plane which is propagated through free space as well as through a turbulent atmosphere. To analyse the propagation of an optical wave through atmospheric turbulence, the simulation, based on the split-step beam propagation method, was utilised. The aim of this study is to determine the optimal parameters for a flattened Gaussian beam at the transmitter plane. As a result, the scintillation index should be reduced. There are a number of theoretical studies aimed at propagating the flattened beam despite the lack of experimental work in this area. Therefore the techniques for generating the flattened Gaussian beam will also be mentioned.

Cite

CITATION STYLE

APA

Barcik, P., Wilfert, O., Leitgeb, E., & Hudcova, L. (2015). Optimal distribution of the optical intensity within a laser beam for optical wireless communications. IET Optoelectronics, 9(5), 263–268. https://doi.org/10.1049/iet-opt.2014.0153

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free