How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method

1Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective As the number of radiology artificial intelligence (AI) papers increases, there are new challenges for reviewing the AI literature as well as differences to be aware of, for those familiar with the clinical radiology literature. We aim to introduce a tool to aid in this process. Methods In evidence-based practise (EBP), you must Ask, Search, Appraise, Apply and Evaluate to come to an evidence-based decision. The bottom-up evidencebased radiology (EBR) method allows for a systematic way of choosing the correct radiological investigation or treatment. Just as the population intervention comparison outcome (PICO) method is an established means of asking an answerable question; herein, we introduce the data algorithm training output (DATO) method to complement PICO by considering Data, Algorithm, Training and Output in the use of AI to answer the question. Results We illustrate the DATO method with a worked example concerning bone age assessment from skeletal radiographs. After a systematic search, 17 bone age estimation papers (5 of which externally validated their results) were appraised. The paper with the best DATO metrics found that an ensemble model combining uncorrelated, high performing simple models should achieve error rates comparable to human performance. Conclusion Considering DATO in the application of EBR to AI is a simple systematic approach to this potentially daunting subject. Advances in knowledge The growth of AI in radiology means that radiologists and related professionals now need to be able to review not only clinical radiological literature but also research using AI methods. Considering Data, Algorithm, Training and Output in the application of EBR to AI is a simple systematic approach to this potentially daunting subject.

Cite

CITATION STYLE

APA

Kelly, B. S., Judge, C., Hoare, S., Colleran, G., Lawlor, A., & Killeen, R. P. (2023). How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method. British Journal of Radiology, 96(1150). https://doi.org/10.1259/bjr.20220215

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free