Abstract
Intrinsic connectivity networks (ICNs), such as the default mode, frontoparietal control, and salience networks, provide a useful largescale description of the functional architecture of the brain. Although ICNs are functionally specialized, the information that they process needs to be integrated for coherent cognition, perception, and behavior. A region capable of performing this integration might be expected to contain traces, or "echoes," of the neural signals from multiple ICNs. Here, using fMRI in humans, we show the existence of specific "transmodal" regions containing echoes of multiple ICNs. These regions include core nodes of the default mode network, as well as multimodal association regions of the temporoparietal and temporo-occipito-parietal junction, right middle frontal gyrus, and dorsal anterior cingulate cortex. In contrast, "unimodal" regions such as the primary sensory and motor cortices show a much more singular pattern of activity, containing traces of few or even single ICNs. The presence of ICN echoes might explain how transmodal regions are involved in multiple different cognitive states. Our results suggest that these transmodal regions have a particular local spatial organization containing topographicmapsthat relate to multiple ICNs. This makes transmodal regions uniquely placed to be able to mediate the cross talk between the brain's functional networks through local modulation of adjacent regions that communicate with different ICNs. © 2013 the authors.
Cite
CITATION STYLE
Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J. S., & Leech, R. (2013). Echoes of the brain within default mode, association, and heteromodal cortices. Journal of Neuroscience, 33(35), 14031–14039. https://doi.org/10.1523/JNEUROSCI.0570-13.2013
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.