Quantification of Long-Range Persistence in Geophysical Time Series: Conventional and Benchmark-Based Improvement Techniques

86Citations
Citations of this article
85Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Time series in the Earth Sciences are often characterized as self-affine long-range persistent, where the power spectral density, S, exhibits a power-law dependence on frequency, f, S(f) ~ f -β, with β the persistence strength. For modelling purposes, it is important to determine the strength of self-affine long-range persistence β as precisely as possible and to quantify the uncertainty of this estimate. After an extensive review and discussion of asymptotic and the more specific case of self-affine long-range persistence, we compare four common analysis techniques for quantifying self-affine long-range persistence: (a) rescaled range (R/S) analysis, (b) semivariogram analysis, (c) detrended fluctuation analysis, and (d) power spectral analysis. To evaluate these methods, we construct ensembles of synthetic self-affine noises and motions with different (1) time series lengths N = 64, 128, 256,..., 131,072, (2) modelled persistence strengths β model = -1.0, -0.8, -0.6,..., 4.0, and (3) one-point probability distributions (Gaussian, log-normal: coefficient of variation c v = 0.0 to 2.0, Levy: tail parameter a = 1.0 to 2.0) and evaluate the four techniques by statistically comparing their performance. Over 17,000 sets of parameters are produced, each characterizing a given process; for each process type, 100 realizations are created. The four techniques give the following results in terms of systematic error (bias = average performance test results for β over 100 realizations minus modelled β) and random error (standard deviation of measured β over 100 realizations): (1) Hurst rescaled range (R/S) analysis is not recommended to use due to large systematic errors. (2) Semivariogram analysis shows no systematic errors but large random errors for self-affine noises with 1.2 ≤ β ≤ 2.8. (3) Detrended fluctuation analysis is well suited for time series with thin-tailed probability distributions and for persistence strengths of β ≥ 0.0. (4) Spectral techniques perform the best of all four techniques: for self-affine noises with positive persistence (β ≥ 0.0) and symmetric one-point distributions, they have no systematic errors and, compared to the other three techniques, small random errors; for anti-persistent self-affine noises (β < 0.0) and asymmetric one-point probability distributions, spectral techniques have small systematic and random errors. For quantifying the strength of long-range persistence of a time series, benchmark-based improvements to the estimator predicated on the performance for self-affine noises with the same time series length and one-point probability distribution are proposed. This scheme adjusts for the systematic errors of the considered technique and results in realistic 95 % confidence intervals for the estimated strength of persistence. We finish this paper by quantifying long-range persistence (and corresponding uncertainties) of three geophysical time series-palaeotemperature, river discharge, and Auroral electrojet index-with the three representing three different types of probability distribution-Gaussian, log-normal, and Levy, respectively. © 2013 The Author(s).

Cite

CITATION STYLE

APA

Witt, A., & Malamud, B. D. (2013). Quantification of Long-Range Persistence in Geophysical Time Series: Conventional and Benchmark-Based Improvement Techniques. Surveys in Geophysics, 34(5), 541–651. https://doi.org/10.1007/s10712-012-9217-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free