Integrated process model applications linking bioprocess development to quality by design milestones

9Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Maximizing the value of each available data point in bioprocess development is essential in order to reduce the time-to-market, lower the number of expensive wet-lab experiments, and maximize process understanding. Advanced in silico methods are increasingly being investigated to accomplish these goals. Within this contribution, we propose a novel integrated process model procedure to maximize the use of development data to optimize the Stage 1 process validation work flow. We generate an integrated process model based on available data and apply two innovative Monte Carlo simulation-based parameter sensitivity analysis linearization techniques to automate two quality by design activities: determining risk assessment severity rankings and establishing preliminary control strategies for critical process parameters. These procedures are assessed in a case study for proof of concept on a candidate monoclonal antibody bioprocess after process development, but prior to process characterization. The evaluation was successful in returning results that were used to support Stage I process validation milestones and demonstrated the potential to reduce the investigated parameters by up to 24% in process characterization, while simultaneously setting up a strategy for iterative updates of risk assessments and process controls throughout the process life-cycle to ensure a robust and efficient drug supply.

Cite

CITATION STYLE

APA

Taylor, C., Marschall, L., Kunzelmann, M., Richter, M., Rudolph, F., Vajda, J., … Herwig, C. (2021). Integrated process model applications linking bioprocess development to quality by design milestones. Bioengineering, 8(11). https://doi.org/10.3390/bioengineering8110156

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free