Biotic and climatic velocity identify contrasting areas of vulnerability to climate change

Citations of this article
Mendeley users who have this article in their library.


Metrics that synthesize the complex effects of climate change are essential tools for mappingfuture threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or facethe prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth'ssurface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, mayprovide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climatechange, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of bioticvelocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche.We calculated climatic and bioticvelocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, andamphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats toequatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonaland interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adaptedpopulations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site's future climate, can facilitate conservation ofdiversity at multiple scales in the face of climate change.




Carroll, C., Lawler, J. J., Roberts, D. R., & Hamann, A. (2015). Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE, 10(10).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free