Classifying patents based on their semantic content

28Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

Abstract

In this paper, we extend some usual techniques of classification resulting from a large-scale data-mining and network approach. This new technology, which in particular is designed to be suitable to big data, is used to construct an open consolidated database from raw data on 4 million patents taken from the US patent office from 1976 onward. To build the pattern network, not only do we look at each patent title, but we also examine their full abstract and extract the relevant keywords accordingly. We refer to this classification as semantic approach in contrast with the more common technological approach which consists in taking the topology when considering US Patent office technological classes. Moreover, we document that both approaches have highly different topological measures and strong statistical evidence that they feature a different model. This suggests that our method is a useful tool to extract endogenous information.

Cite

CITATION STYLE

APA

Bergeaud, A., Potiron, Y., & Raimbault, J. (2017). Classifying patents based on their semantic content. PLoS ONE, 12(4). https://doi.org/10.1371/journal.pone.0176310

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free