Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction

265Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.
Get full text

Abstract

wingless, the Drosophila homologue of the proto-oncogene Wnt-1, encodes a secreted glycoprotein that regulates differentiation and proliferation of nearby cells. Here we report on the biochemical mechanism(s) by which the wingless signal is transmitted from cell to cell. When expressed in S2 cells, the majority (~83%) of secreted wingless protein (WG) is bound to the cell surface and extracellular matrix through specific, noncovalent interactions. The tethered WG can be released by addition of exogenous heparan sulfate and chondroitin sulfate glycosaminoglycans. WG also binds directly to heparin agarose beads with high affinity. These data suggest that WG can bind to the cell surface via naturally occurring sulfated proteoglycans. Two lines of evidence indicate that extracellular glycosaminoglycans on the receiving cells also play a functional role in WG signaling. First, treatment of WG- responsive cells with glycosaminoglycan lyases reduced WG activity by 50%. Second, when WG-responsive cells were preincubated with 1 mM chlorate, which blocks sulfation, WG activity was inhibited to near-basal levels. Addition of exogenous heparin to the chlorate-treated cells was able to restore WG activity. Based on these results, we propose that WG belongs to the group of growth factor ligands whose actions are mediated by extracellular proteoglycan molecules.

Cite

CITATION STYLE

APA

Reichsman, F., Smith, L., & Cumberledge, S. (1996). Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. Journal of Cell Biology, 135(3), 819–827. https://doi.org/10.1083/jcb.135.3.819

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free