Molecular mechanisms of copper homeostasis

59Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

The transition metal copper (Cu) is an essential trace element for all biota. Its redox properties bestow Cu with capabilities that are simultaneously essential and potentially damaging to the cell. Free Cu is virtually absent in the cell. The descriptions of the structural and functional organization of the metallothioneins, Cu-chaperones and P-type ATPases as well as of the mechanisms that regulate their distribution and functioning in the cell have enormously advanced our understanding of the Cu homeostasis and metabolism in the last decade. Cu is stored by metallothioneins and distributed by specialized chaperones to specific cell targets that make use of its redox properties. Transfer of Cu to newly synthesized cuproenzymes and Cu disposal is performed by the individual or concerted actions of the P-type ATPases ATP7A and ATP7B expressed in tissues. In mammalians liver is the major captor, distributor and excreter of Cu. Mutations in the P-type ATPases that interfere with their functioning and traffic are cause of the life-threatening Wilson (ATP7B) and Menkes (ATP7A) diseases.

Cite

CITATION STYLE

APA

Lalioti, V., Muruais, G., Tsuchiya, Y., Pulido, D., & Sandoval, I. V. (2009). Molecular mechanisms of copper homeostasis. Frontiers in Bioscience, 14(13), 4878–4903. https://doi.org/10.2741/3575

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free