Abstract
We present a series of new dopants based on a bicyclcic guanidine-type structure, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), for organic semiconductors. A series of TBD derivatives that were alkylated at the 7-position were synthesized and their physical properties were determined. These stable dopants were shown to be effective n-type dopants for [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), poly{[N,N′-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)} (P(NDI2OD-T2)) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC). Films of PC61BM doped with 10 mol% of a dimeric derivative of TBD had electrical conductivities of 0.065 S cm-1. The utility of the dopants was further shown by doping electron transport layers of PC61BM with 2TBD-C10 for methyl ammonium lead iodide (MAPbI3) solar cells leading to improved fill factors and PCEs relative to undoped ETLs.
Cite
CITATION STYLE
Nakayama, H., Schneider, J. A., Faust, M., Wang, H., Read De Alaniz, J., & Chabinyc, M. L. (2020). A new family of liquid and solid guanidine-based n-type dopants for solution-processed perovskite solar cells. Materials Chemistry Frontiers, 4(12), 3616–3622. https://doi.org/10.1039/d0qm00437e
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.