Orthotropic Piezoelectricity in 2D Nanocellulose

42Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ∼pm V-1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

Cite

CITATION STYLE

APA

García, Y., Ruiz-Blanco, Y. B., Marrero-Ponce, Y., & Sotomayor-Torres, C. M. (2016). Orthotropic Piezoelectricity in 2D Nanocellulose. Scientific Reports, 6. https://doi.org/10.1038/srep34616

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free