Hierarchical HotNet: Identifying hierarchies of altered subnetworks

88Citations
Citations of this article
146Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Motivation The analysis of high-dimensional 'omics data is often informed by the use of biological interaction networks. For example, protein-protein interaction networks have been used to analyze gene expression data, to prioritize germline variants, and to identify somatic driver mutations in cancer. In these and other applications, the underlying computational problem is to identify altered subnetworks containing genes that are both highly altered in an 'omics dataset and are topologically close (e.g. connected) on an interaction network. Results We introduce Hierarchical HotNet, an algorithm that finds a hierarchy of altered subnetworks. Hierarchical HotNet assesses the statistical significance of the resulting subnetworks over a range of biological scales and explicitly controls for ascertainment bias in the network. We evaluate the performance of Hierarchical HotNet and several other algorithms that identify altered subnetworks on the problem of predicting cancer genes and significantly mutated subnetworks. On somatic mutation data from The Cancer Genome Atlas, Hierarchical HotNet outperforms other methods and identifies significantly mutated subnetworks containing both well-known cancer genes and candidate cancer genes that are rarely mutated in the cohort. Hierarchical HotNet is a robust algorithm for identifying altered subnetworks across different 'omics datasets. Availability and implementation http://github.com/raphael-group/hierarchical-hotnet. Supplementary information Supplementary material are available at Bioinformatics online.

Cite

CITATION STYLE

APA

Reyna, M. A., Leiserson, M. D. M., & Raphael, B. J. (2018). Hierarchical HotNet: Identifying hierarchies of altered subnetworks. In Bioinformatics (Vol. 34, pp. i972–i980). Oxford University Press. https://doi.org/10.1093/bioinformatics/bty613

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free