Wearable UV photodetectors (PDs) have attracted interest recently for detection of excess exposure of the skin to the UV radiation. Despite numerous advances made in this direction, many challenges remain, particularly in terms of device reliability under extreme mechanical deformations simultaneously and self-powering, etc. Herein, a self-powered stretchable PD developed with kirigami-inspired honeycomb-patterned zinc oxide (ZnO) nanowires (NWs) and coupled with a triboelectric nanogenerator (TENG) is presented. After studying in detail the influence of ZnO NWs dispersion medium and metal-ZnO NWs contacts, a novel fabrication approach employing the structural engineering on NWs-elastomer composite is used to achieve high stretchability. The fabricated ZnO NWs-based UV PDs, embedded inside kirigami-inspired honeycomb-patterned elastomeric substrate, exhibit unprecedented stretchability (up to 125%) and high-performance with photo/dark current ratio of ≈5 × 105, responsivity of ≈54 A W−1, and a fast recovery time of 100 ms. Further, the stretchable PD is coupled with flexible TENGs to demonstrate a self-powered system for potential application in real-time UV radiation monitoring using advanced wearable healthcare technology.
CITATION STYLE
Kumaresan, Y., Min, G., Dahiya, A. S., Ejaz, A., Shakthivel, D., & Dahiya, R. (2022). Kirigami and Mogul-Patterned Ultra-Stretchable High-Performance ZnO Nanowires-Based Photodetector. Advanced Materials Technologies, 7(1). https://doi.org/10.1002/admt.202100804
Mendeley helps you to discover research relevant for your work.