Abstract
During a seismic event, a considerable amount of energy is input into a structure. The law of energy conservation imposes the restriction that energy must either be absorbed or dissipated by the structure. Recent earthquakes have shown that the use of concentric bracing system with their low ductility and low energy dissipation capacity, causes permanent damage to structures during intense earthquakes. Hence, engineers are looking at bracing system with higher ductility, such as chevron and eccentric braces. However, braced frame would not be easily repaired if serious damage has occured during a strong earthquake. In order to solve this problem, a new bracing system an off-centre bracing system with higher ductility and higher energy dissipation capacity, is considered. In this paper, some numerical studies have been performed using ANSYS software on a frame with off-centre bracing system with optimum eccentricity and circular element created, called OBS-C-O model. In addition, other steel frame with diagonal bracing system and the same circular element is created, called DBS C model. Furthermore, linear and nonlinear behavior of these steel frames are compared in order to introduce a new way of optimum performance for these dissipating elements. The obtained results revealed that using a ductile element or circular dissipater for increasing the ductility of off-centre bracing system and centric bracing system is useful. Finally, higher ductility and more energy dissipation led to more appropriate behavior in the OBS-C-O model compared to DBS-C model.
Author supplied keywords
Cite
CITATION STYLE
Bazzaz, M., Andalib, Z., Kheyroddin, A., & Kafi, M. A. (2015). Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system. Steel and Composite Structures, 19(4), 917–937. https://doi.org/10.12989/scs.2015.19.4.917
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.