The fast-increasing introduction of renewable energy sources (RESes) leads to some problems in electrical power network due to fluctuating generated power. A power system must be operated with provision of various reserve powers like governor free capacity, load frequency control and spinning reserve. Therefore, the generator's schedule (unit commitment schedule) should include the consideration of the various power reserves. In addition, it is necessary to calculate the annual operational costs of electric power systems by solving the unit commitment per week of thermal power generators and pumped storages in order to compare and examine the variance of the operational costs and the operating ratio of the generators throughout the year. This study proposes a novel annual analysis for the thermal power generator and pumped storages under a massive introduction of RESes. A weekly unit commitment schedule (start/stop planning) for thermal power generator and pumped storages has been modeled and calculated for one year evaluation. To solve the generator start/stop planning problem, Tabu search and interior point methods are adopted to solve the operation planning for thermal power generators and the output decision for pumped storages, respectively. It is demonstrated that the proposed method can analyze a one-year evaluation within practical time. In addition, by assuming load frequency control (LFC) constraints to cope with photovoltaic (PV) output fluctuations, the impact of the intensity of LFC constraints on the operational cost of the thermal power generator has been elucidated. The increment of the operational cost of the power supply with increasing PV introduction amount has been shown in concrete terms.
CITATION STYLE
Mitani, T., Aziz, M., Oda, T., Uetsuji, A., Watanabe, Y., & Kashiwagi, T. (2017). Annual assessment of large-scale introduction of renewable energy: Modeling of unit commitment schedule for thermal power generators and pumped storages. Energies, 10(6). https://doi.org/10.3390/en10060738
Mendeley helps you to discover research relevant for your work.