Background: Phase contrast MR imaging is a rapid and non-invasive technique which is sensitive in diagnosis and follow-up of different neurological diseases that cause CSF flow abnormality. MRI CSF flowmetry will be currently assessed in different neurological diseases that may cause CSF flow abnormalities. Results: This study includes 39 patients with their ages ranging from 1 to 65 years; they were referred from the neurology department, with nine individuals of matched age and sex as a control group. Based on clinical history and conventional MRI, patients were subdivided into five subgroups; normal pressure hydrocephalus (NPH), hydrocephalus, idiopathic intracranial hypertension (IIH), brain atrophy (BA), and Chiari malformation type I (CM-I). All patients and control were subjected to MRI CSF flowmetry evaluation with stress on peak diastolic velocity (PDV), peak systolic velocity (PSV), stroke volume (SV), and maximum velocity (Vmax). PDV, PSV, and SV were found significantly higher in NPH, CM-I, and hydrocephalus compared to control (4.2, 4.96, and 83.23 for NPH; 3.95, 4.93, and 37.38 for CM-I; and 4.2, 5.6, and 125 in hydrocephalus versus 2.11, 2.73, and 75.33 in control, respectively; P = 0.0004, 0.0008, and 0.0009 for NPH; 0.03, 0.003, and 0.06 for CM-I; and 0.0005, 0.0002, and 0.0003, respectively). On the other hand, patients with BA showed significantly lower values (1.37, 1.66, and 1.53, respectively) compared to control (P = 0.001, 0.001, and 0.004, respectively). Conclusion: MRI CSF flowmetry provides an easy, accurate, and non-invasive method for diagnosis of different neurological diseases that cause CSF flow abnormality. Moreover, this diagnostic modality could be helpful in selecting the therapeutic option.
CITATION STYLE
Ahmad, N., Salama, D., & Al-Haggar, M. (2021). MRI CSF flowmetry in evaluation of different neurological diseases. Egyptian Journal of Radiology and Nuclear Medicine, 52(1). https://doi.org/10.1186/s43055-021-00429-w
Mendeley helps you to discover research relevant for your work.