Visual Occlusions Result in Phase Synchrony Within Multiple Brain Regions Involved in Sensory Processing and Balance Control

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

There is a need to develop appropriate balance training interventions to minimize the risk of falls. Recently, we found that intermittent visual occlusions can substantially improve the effectiveness and retention of balance beam walking practice (Symeonidou & Ferris, 2022). We sought to determine how the intermittent visual occlusions affect electrocortical activity during beam walking. We hypothesized that areas involved in sensorimotor processing and balance control would demonstrate spectral power changes and inter-trial coherence modulations after loss and restoration of vision. Ten healthy young adults practiced walking on a treadmill-mounted balance beam while wearing high-density EEG and experiencing reoccurring visual occlusions. Results revealed spectral power fluctuations and inter-trial coherence changes in the visual, occipital, temporal, and sensorimotor cortex as well as the posterior parietal cortex and the anterior cingulate. We observed a prolonged alpha increase in the occipital, temporal, sensorimotor, and posterior parietal cortex after the occlusion onset. In contrast, the anterior cingulate showed a strong alpha and theta increase after the occlusion offset. We observed transient phase synchrony in the alpha, theta, and beta bands within the sensory, posterior parietal, and anterior cingulate cortices immediately after occlusion onset and offset. Intermittent visual occlusions induced electrocortical spectral power and inter-trial coherence changes in a wide range of frequencies within cortical areas relevant for multisensory integration and processing as well as balance control. Our training intervention could be implemented in senior and rehabilitation centers, improving the quality of life of elderly and neurologically impaired individuals.

Cite

CITATION STYLE

APA

Symeonidou, E. R., & Ferris, D. P. (2023). Visual Occlusions Result in Phase Synchrony Within Multiple Brain Regions Involved in Sensory Processing and Balance Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 3772–3780. https://doi.org/10.1109/TNSRE.2023.3317055

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free