Sorting nexins are conserved proteins that function in vesicular trafficking and contain a characteristic phox homology (PX) domain. Here, we characterize the ubiquitously expressed Arabidopsis thaliana sorting nexin AtSNX2b. Sub-cellular fractionation studies indicate that AtSNX2b is peripherally associated with membranes. The AtSNX2b PX domain binds to phosphatidylinositol 3-phosphate in vitro and this association is required for the localization of GFP-AtSNX2b to punctate structures in vivo, identified as the trans-Golgi network, prevacuolar compartment and endosomes. Overexpression of GFP-tagged AtSNX2b produces enlarged GFP-labeled compartments that can also be labeled by the endocytic tracer FM4-64. Endocytic trafficking of FM4-64 to the vacuole is arrested in these GFP-AtSNX2b compartments, and similar FM4-64-accumulating compartments are seen upon overexpression of untagged AtSNX2b. This suggests that exit of membrane components from these enlarged or aggregated endosomes is inhibited. Vacuolar proteins containing an N-terminal propeptide, but not those with a C-terminal propeptide, are also present in these enlarged compartments. We hypothesize that AtSNX2b is involved in vesicular trafficking from endosomes to the vacuole.
CITATION STYLE
Phan, N. Q., Kim, S. J., & Bassham, D. C. (2008). Overexpression of arabidopsis sorting nexin AtSNX2b inhibits endocytic trafficking to the vacuole. Molecular Plant, 1(6), 961–976. https://doi.org/10.1093/mp/ssn057
Mendeley helps you to discover research relevant for your work.