Camptothecin (CPT)-11 (irinotecan) has been used widely for cancer treatment, particularly metastatic colorectal cancer. However, up to 40% of treated patients suffer from severe late diarrhea, which prevents CPT-11 dose intensification and efficacy. CPT-11 is a prodrug that is hydrolyzed by hepatic and intestinal carboxylesterase to form SN-38, which in turn is detoxified primarily through UDPglucuronosyltransferase 1A1 (UGT1A1)-catalyzed glucuronidation. To better understand the mechanism associated with toxicity, we generated tissue-specific Ugt1 locus conditional knockout mouse models and examined the role of glucuronidation in protecting against irinotecan-induced toxicity. We targeted the deletion of the Ugt1 locus and the Ugt1a1 gene specifically in the liver (Ugt1Hep) and the intestine (Ugt1GI). Control (Ugt1F/F), Ugt1Hep, and Ugt1GI adult male mice were treated with different concentrations of CPT-11 daily for four consecutive days. Toxicities were evaluated with regard to tissue glucuronidation potential. CPT-11- treated Ugt1Hep mice showed a similar lethality rate to the CPT-11- treated Ugt1F/F mice. However, Ugt1GI mice were highly susceptible to CPT-11-induced diarrhea, developing severe and lethal mucositis at much lower CPT-11 doses, a result of the proliferative cell loss and inflammation in the intestinal tract. Comparative expression levels of UGT1A1 in intestinal tumors and normal surrounding tissue are dramatically different, providing for the opportunity to improve therapy by differential gene regulation. Intestinal expression of the UGT1A proteins is critical toward the detoxification of SN-38, whereas induction of the UGT1A1 gene may serve to limit toxicity and improve the efficacy associated with CPT-11 treatment.
CITATION STYLE
Chen, S., Yueh, M. F., Bigo, C., Barbier, O., Wang, K., Karin, M., … Tukey, R. H. (2013). Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11). Proceedings of the National Academy of Sciences of the United States of America, 110(47), 19143–19148. https://doi.org/10.1073/pnas.1319123110
Mendeley helps you to discover research relevant for your work.