Herein, we report a single-step synthesis, characterization, and electrochemical performance of nano-sized LiFePO4 (LFP)-embedded 3D-cubic mesoporous carbon (CSI-809) and nitrogenous carbon (MNC-859) composites. Furthermore, in order to investigate the effects of both CSI-809 and MNC-859 on the electrochemical characteristics of LFP, a systematic study was performed on the morphology and microstructure of the composites, viz., LFP/CSI-809 and LFP/MNC-859, using XRD, FE-SEM, FT-Raman, and BET surface area analyses. Among these composites, LFP/MNC-859 exhibited better electrochemical performance with higher specific capacity and rate capability as compared to those of LFP/CSI-809. In addition, even after 100 cycles, LFP/MNC-859 retained 97% of its initial discharge capacity at 1C rate. The enhanced electrochemical performance of the nano-sized LFP-embedded MNC-859 can be attributed to the conductive nitrogenous carbon and mesoporosity, which facilitate electrolyte diffusion, and improved conductivity of the advanced LFP-nitrogenous porous carbon matrix.
CITATION STYLE
Khan, S., Raj, R. P., Rama Mohan, T. V., & Selvam, P. (2020). Electrochemical performance of nano-sized LiFePO4-embedded 3D-cubic ordered mesoporous carbon and nitrogenous carbon composites. RSC Advances, 10(51), 30406–30414. https://doi.org/10.1039/d0ra04754f
Mendeley helps you to discover research relevant for your work.