Studying the patterns of changes in species diversity and soil properties can improve our knowledge of community succession. However, there is still a gap in understanding how soil conditions are related to plant diversity in tropical coastal secondary forests. We sampled plant diversity and soil nutrients spanning two different years (2012 and 2019) to assess the patterns of species diversity and relationships of soil nutrients and species diversity on Hainan Island, southern China. Results showed that the soil pH and total nitrogen (TN) significantly decreased while the soil organic matter (OM) and total phosphorus (TP) significantly increased from 2012 to 2019. Plant species diversity was significantly higher in 2012 than in 2019, and the dominant species significantly changed in two different years. Using multiple regression analysis, we determined that soil TP and TN were significantly related to plant diversity in 2012 and 2019, respectively. Using CCA analysis, TN and OM were the strongest predictors for dominant species in 2012, whereas the soil TP and TN were the strongest predictors for dominant species in 2019. Our findings show a significant change in plant diversity and dominant species after 7 years of development in the tropical coastal secondary forest. The patterns of plant diversity and soil nutrients increase our knowledge of forest restoration in coastal areas.
CITATION STYLE
Yaseen, M., Fan, G., Zhou, X., Long, W., & Feng, G. (2022). Plant Diversity and Soil Nutrients in a Tropical Coastal Secondary Forest: Association Ordination and Sampling Year Differences. Forests, 13(3). https://doi.org/10.3390/f13030376
Mendeley helps you to discover research relevant for your work.