Polymorph Selectivity of Coccolith-Associated Polysaccharides from Gephyrocapsa Oceanica on Calcium Carbonate Formation In Vitro

28Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Coccolith-associated polysaccharides (CAPs) are thought to be a key part of the biomineralization process in coccolithophores; however, their role is not fully understood. Two different systems that promote different polymorphs of calcium carbonate are used to show the effect of CAPs on nucleation and polymorph selection in vitro. Using a combination of time-resolved cryo-transmission electron microscopy and scanning electron microscopy, the mechanisms of calcite nucleation and growth in the presence of the intracrystalline fraction are examined containing CAPs extracted from coccoliths from Gephyrocapsa oceanica and Emiliania huxleyi, two closely related coccolithophore species. The CAPs extracted from G. oceanica are shown to promote calcite nucleation in vitro, even under conditions favoring the kinetic products of calcium carbonate, vaterite, and aragonite. This is not the case with CAPs extracted from E. huxleyi, suggesting that the functional role of CAPs in vivo may be different between the two species. Additionally, high-resolution synchrotron powder X-ray diffraction has revealed that the polysaccharide is located between grain boundaries of both calcite produced in the presence of the CAPs in vitro and biogenic calcite, rather than within the crystal lattice.

Cite

CITATION STYLE

APA

Walker, J. M., Marzec, B., Lee, R. B. Y., Vodrazkova, K., Day, S. J., Tang, C. C., … Nudelman, F. (2019). Polymorph Selectivity of Coccolith-Associated Polysaccharides from Gephyrocapsa Oceanica on Calcium Carbonate Formation In Vitro. Advanced Functional Materials, 29(1). https://doi.org/10.1002/adfm.201807168

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free