The glycoside hydrolase family 8 reducing-end xylose-releasing exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 is active on branched xylooligosaccharides

32Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A GH8 family enzyme involved in xylan depolymerization has been characterized. The enzyme, Rex8A, is a reducing-end xylosereleasing exo-oligoxylanase (Rex) that efficiently hydrolyzes xylooligosaccharides and shows minor activity on polymeric xylan. Rex8A hydrolyzes xylooligomers of 3 to 6 xylose units to xylose and xylobiose in long-term incubations. Kinetic constants of Rex8A were determined on xylotriose, showing a Km of 1.64±0.03 mM and a kcat value of 118.8 s-1. Besides linear xylooligosaccharides, the enzyme hydrolyzed decorated xylooligomers. The catalytic activity on branched xylooligosaccharides, i.e., the release of xylose from the reducing end, is a newly described trait of xylose-releasing exo-oligoxylanases, as the exo-activity on these substrates has not been reported for the few of these enzymes characterized to date. Modeling of the three-dimensional (3D) structure of Rex8A shows an (α/α)6 barrel fold where the loops connecting the α-helices contour the active site. These loops, which show high sequence diversity among GH8 enzymes, shape a catalytic cleft with a-2 subsite that can accommodate methyl-glucuronic acid decorations. The hydrolytic ability of Rex8A on branched oligomers can be crucial for the complete depolymerization of highly substituted xylans, which is indispensable to accomplish biomass deconstruction and to generate efficient catalysts.

Cite

CITATION STYLE

APA

Valenzuela, S. V., Lopez, S., Biely, P., Sanz-Aparicio, J., & Pastor, F. I. J. (2016). The glycoside hydrolase family 8 reducing-end xylose-releasing exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 is active on branched xylooligosaccharides. Applied and Environmental Microbiology, 82(17), 5116–5124. https://doi.org/10.1128/AEM.01329-16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free