Ultrasound can be used to assess injury and structural changes to the soft-tissue structure of the foot. It may be useful to assess the feet of people with diabetes who are at increased risk of plantar soft-tissue pathological changes. The aim of this study was to determine if ultrasound measurements of plantar soft-tissue thickness and assessments of tissue acoustic characteristics are reliable in people with and without diabetes mellitus. A repeated measures design was used to determine intra-observer reliability for ultrasound measurements of plantar skin and fat pad thickness and intra- and inter-observer reliability of plantar skin and fat pad tissue characterisation assessments made at foot sites which are at risk of tissue injury in people with diabetes. Thickness measurements and tissue characterisation assessments were obtained at the heel and forefoot in both the unloaded and compressed states and included discrete layers of the plantar tissues: skin, microchamber, horizontal fibrous band, macrochamber and total soft-tissue depth. At each site, relative intra-observer reliability was achieved for the measurement of at least one plantar tissue layer. The total soft-tissue thickness measured in the unloaded state (ICC 0.925-0.976) demonstrated intra-observer reliability and is the most sensitive for detecting small change on repeated measures. Intra-observer agreement was demonstrated for tissue characteristic assessments of the skin at the heel (k = 0.70), fat pad at the lateral sesamoid region (k = 0.70) and both skin and fat pad at the second (k = 0.80, k = 0.70 respectively) and third metatarsal heads (k = 0.90, k = 0.79 respectively). However, acceptable inter-observer agreement was not demonstrated for any tissue characteristic assessment, therefore the use of multiple observers should be avoided when making these assessments.
CITATION STYLE
Morrison, T., Jones, S., Causby, R. S., & Thoirs, K. (2021). Reliability of ultrasound in evaluating the plantar skin and fat pad of the foot in the setting of diabetes. PLoS ONE, 16(9 September). https://doi.org/10.1371/journal.pone.0257790
Mendeley helps you to discover research relevant for your work.