Predicted and measured muscle forces after recoveries of differing durations following fatigue in functional electrical stimulation

17Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Using 31P nuclear magnetic resonance (NMR) spectroscopy, the bioenergetics of paralyzed muscles activated by functional electrical stimulation (FES) were studied in vivo during fatigue and recovery on paraplegic subjects. During the activation phase of the muscle, the muscle force was also monitored. The phosphorus metabolites were found to vary systematically during fatigue and to recover slowly to their rest state values after cessation of FES. During fatigue, a good correlation was found between the decaying force and each of the profiles of phosphocreatine, inorganic phosphorus, and intracellular pH. A musculotendon 5 element model was proposed for the activated muscle to predict its force generation capacity. A fatigue recovery function, based on the metabolic profiles, was introduced into the model. This model allowed us to predict the force expected to be developed as a function of the time after recovery of given time durations. Validation experimental measurements of force were carried out and included recurrent fatigue tests, both in the initially unfatigued state and at various times in the postfatigue stage of the muscle. Comparison of the predicted and measured forces indicated satisfactory agreement of the results. The developed model of muscle dynamics should help to design a strategy for reducing muscle fatigue under FES.

Cite

CITATION STYLE

APA

Mizrahi, J., Seelenfreund, D., Isakov, E., & Susak, Z. (1997). Predicted and measured muscle forces after recoveries of differing durations following fatigue in functional electrical stimulation. Artificial Organs, 21(3), 236–239. https://doi.org/10.1111/j.1525-1594.1997.tb04657.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free