Abstract
For Device-to-device (D2D) communication of Internet-of-Things (IoT) enabled 5G system, there is a limit to allocating resources considering a complicated interference between different links in a centralized manner. If D2D link is controlled by an enhanced node base station (eNB), and thus, remains a burden on the eNB and it causes delayed latency. This paper proposes a fully autonomous power allocation method for IoT-D2D communication underlaying cellular networks using deep learning. In the proposed scheme, an IoT-D2D transmitter decides the transmit power independently from an eNB and other IoT-D2D devices. In addition, the power set can be nearly optimized by deep learning with distributed manner to achieve higher cell throughput. We present a distributed deep learning architecture in which the devices are trained as a group but operate independently. The deep learning can attain near optimal cell throughput while suppressing interference to eNB.
Author supplied keywords
Cite
CITATION STYLE
Kim, J., Park, J., Noh, J., & Cho, S. (2020). Autonomous Power Allocation Based on Distributed Deep Learning for Device-to-Device Communication Underlaying Cellular Network. IEEE Access, 8, 107853–107864. https://doi.org/10.1109/ACCESS.2020.3000350
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.