Hybrid cellulose-glass fiber composites for automotive applications

39Citations
Citations of this article
112Readers
Mendeley users who have this article in their library.

Abstract

In the recent years, automakers have been striving to improve the carbon footprint of their vehicles. Sustainable composites, consisting of natural fibers, and/or recycled polymers have been developed as a way to increase the "green content" and reduce the weight of a vehicle. In addition, recent studies have found that the introduction of synthetic fibers to a traditional fiber composite such as glass filled plastics, producing a composite with multiple fillers (hybrid fibers), can result in superior mechanical properties. The objective of this work was to investigate the effect of hybrid fibers on characterization and material properties of polyamide-6 (PA6)/polypropylene (PP) blends. Cellulose and glass fibers were used as fillers and the mechanical, water absorption, and morphological properties of composites were evaluated. The addition of hybrid fibers increased the stiffness (tensile and flexural modulus) of the composites. Glass fibers reduced composite water absorption while the addition of cellulose fibers resulted in higher composite stiffness. The mechanical properties of glass and cellulose filled PA6/PP composites were optimized at loading levels of 15 wt% glass and 10 wt% cellulose, respectively.

Cite

CITATION STYLE

APA

Annandarajah, C., Langhorst, A., Kiziltas, A., Grewell, D., Mielewski, D., & Montazami, R. (2019). Hybrid cellulose-glass fiber composites for automotive applications. Materials, 12(19). https://doi.org/10.3390/ma12193189

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free