VariantBam: Filtering and profiling of nextgenerational sequencing data using region-specific rules

17Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We developed VariantBam, a C++read filtering and profiling tool for use with BAM, CRAM and SAM sequencing files. VariantBam provides a flexible framework for extracting sequencing reads or read-pairs that satisfy combinations of rules, defined by any number of genomic intervals or variant sites. We have implemented filters based on alignment data, sequence motifs, regional coverage and base quality. For example, VariantBam achieved a median size reduction ratio of 3.1:1 when applied to 10 lung cancer whole genome BAMs by removing large tags and selecting for only high-quality variant-supporting reads and reads matching a large dictionary of sequence motifs. Thus VariantBam enables efficient storage of sequencing data while preserving the most relevant information for downstream analysis.

Cite

CITATION STYLE

APA

Wala, J., Zhang, C. Z., Meyerson, M., & Beroukhim, R. (2016). VariantBam: Filtering and profiling of nextgenerational sequencing data using region-specific rules. Bioinformatics, 32(13), 2029–2031. https://doi.org/10.1093/bioinformatics/btw111

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free