Transcription factors in ferroptotic cell death

177Citations
Citations of this article
99Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Ferroptosis, a form of regulated cell death, is characterized by an excessive degree of iron accumulation and lipid peroxidation. Although it was originally identified only in cells expressing a mutant RAS oncogene, ferroptosis has also been found in normal cells following treatment by small molecules (e.g., erastin and RSL3) or drugs (e.g., sulfasalazine, sorafenib, and artesunate), which target antioxidant enzyme systems, especially the amino acid antiporter system xc− and the glutathione peroxidase GPX4. Dysfunctional ferroptosis is implicated in various physiological and pathological processes (e.g., metabolism, differentiation, and immunity). Targeting the ferroptotic network appears to a new treatment option for diseases or pathological conditions (e.g., cancer, neurodegeneration, and ischemia reperfusion injury). While the molecular machinery of ferroptosis remains largely unknown, several transcription factors (e.g., TP53, NFE2L2/NRF2, ATF3, ATF4, YAP1, TAZ, TFAP2C, SP1, HIF1A, EPAS1/HIF2A, BACH1, TFEB, JUN, HIC1, and HNF4A) play multiple roles in shaping ferroptosis sensitivity through either transcription-dependent or transcription-independent mechanisms. In this review, we summarize recent progress in understanding the transcriptional regulation underlying ferroptotic cell death, and discuss how it has provided new insights into cancer therapy.

Cite

CITATION STYLE

APA

Dai, C., Chen, X., Li, J., Comish, P., Kang, R., & Tang, D. (2020, September 1). Transcription factors in ferroptotic cell death. Cancer Gene Therapy. Springer Nature. https://doi.org/10.1038/s41417-020-0170-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free