A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and A Posteriori error estimation

30Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: We consider a static condensation reduced basis element framework for efficient approximation of parameter-dependent linear elliptic partial differential equations in large three-dimensional component-based domains. The approach features an offline computational stage in which a library of interoperable parametrized components is prepared; and an online computational stage in which these component archetypes may be instantiated and connected through predefined ports to form a global synthesized system. Thanks to the component-interior reduced basis approximations, the online computation time is often relatively small compared to a classical finite element calculation. Methods: In addition to reduced basis approximation in the component interiors, we employ in this paper port reduction with empirical port modes to reduce the number of degrees of freedom on the ports and thus the size of the Schur complement system. The framework is equipped with efficiently computable a posteriori error estimators that provide asymptotically rigorous bounds on the error in the approximation with respect to the underlying finite element discretization. We extend our earlier approach for two-dimensional scalar problems to the more demanding three-dimensional vector-field case. Results and Conclusions: This paper focuses on linear elasticity analysis for large structures with tens of millions of finite element degrees of freedom. Through our procedure we effectively reduce the number of degrees of freedom to a few thousand, and we demonstrate through extensive numerical results for a microtruss structure that our approach provides an accurate, rapid, and a posteriori verifiable approximation for relevant large-scale engineering problems.

Cite

CITATION STYLE

APA

Eftang, J. L., & Patera, A. T. (2014). A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and A Posteriori error estimation. Advanced Modeling and Simulation in Engineering Sciences, 1(1). https://doi.org/10.1186/2213-7467-1-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free