Tumor‐derived factors differentially affect the recruitment and plasticity of neutrophils

8Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Neutrophils play a key role in cancer biology. In contrast to circulating normal‐density neutrophils (NDN), the amount of low‐density neutrophils (LDN) significantly increases with tumor progression. The correlation between these neutrophil subpopulations and intratumoral neutrophils (TANs) is still under debate. Using 4T1 (breast) and AB12 (mesothelioma) tumor models, we aimed to elucidate the source of TANs and to assess the mechanisms driving neutrophils’ plasticity in cancer. Both NDN and LDN were found to migrate in response to CXCL1 and CXCL2 exposure, and co‐infiltrate the tumor site ex vivo and in vivo, although LDN migration into the tumor was higher than NDN. Tumor‐derived factors and chemokines, particularly CXCL1, were found to drive neutrophil phenotypical plasticity, inducing NDN to transition towards a low‐density state (LD‐NDN). LD‐NDN appeared to differ from NDN by displaying a phenotypical profile similar to LDN in terms of nuclear morphology, surface receptor markers, decreased phagocytic abilities, and increased ROS production. Interestingly, all three subpopulations displayed comparable cytotoxic abilities towards tumor cells. Our data suggest that TANs originate from both LDN and NDN, and that a portion of LDN derives from NDN undergoing phenotypical changes. NDN plasticity resulted in a change in surface marker expression and functional activity, gaining characteristics of LDN.

Cite

CITATION STYLE

APA

Arpinati, L., Kaisar‐iluz, N., Shaul, M. E., Groth, C., Umansky, V., & Fridlender, Z. G. (2021). Tumor‐derived factors differentially affect the recruitment and plasticity of neutrophils. Cancers, 13(20). https://doi.org/10.3390/cancers13205082

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free