Characterization of AmpC, CTX-M and MBLs types of β-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli producing extended spectrum β-lactamases in Kerman, Iran

39Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

Background: Extended spectrum β-lactamases (ESBLs) and AmpC β-lactamases enzyme are major sources of resistance to β-lactam antibiotics especially in Enterobacteriaceae such as Escherichia coli and Klebsiella pneumoniae. Increasing frequency of the co-existence of ESBLs with AmpC-β-lactamases in bacteria is a serious threat for treating bacterial infections. Objectives: The aim of this study was to determine the presence of AmpC and CTX-M types of β-lactamases in clinical isolates of E. coli and K. pneumoniae producing ESBLs. Materials and Methods: Resistance to different antibiotics was determined using the standard disk diffusion method. ESBLs, MBLs and AmpC-β-lactamases were detected by the combination double disk test (CDDT) method and polymerase chain reaction (PCR) was used to determine blaCTX-M genes in the ESBLs and AmpC positive isolates. Results: The prevalence of ESBLs and AmpC-β-lactamase producer isolates was 181 (43.8%) and 133 (37.2%), respectively. The prevalence of blaCTX-M among isolates was 61 (14.7%). Conclusions: Outbreak of isolates co-expressing AmpC-β-lactamases and ESBLs can cause serious problems in the future, regarding the treatment of infections caused by these common enteric pathogens. © 2014, Ahvaz Jundishapur University of Medical Sciences; Published by Kowsar Corp.

Cite

CITATION STYLE

APA

Mansouri, S., Neyestanaki, D. K., Shokoohi, M., Halimi, S., Beigverdi, R., Rezagholezadeh, F., & Hashemi, A. (2014). Characterization of AmpC, CTX-M and MBLs types of β-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli producing extended spectrum β-lactamases in Kerman, Iran. Jundishapur Journal of Microbiology, 7(2). https://doi.org/10.5812/jjm.8756

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free