Influence of interactions among polymeric components of automobile shredder residue on the pyrolysis temperature and characterization of pyrolytic products

10Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Pyrolysis and gasification have gradually become the main means to dispose of automobile shredder residue (ASR), since these methods can reduce the volume and quality of landfill with lower cost and energy recovery can be conducted simultaneously. As the ASR pyrolysis process is integrated, the results of pyrolysis reactions of organic components and the interaction among polymeric components can be clarified by co-pyrolysis thermogravimetric experiments. The results show that the decomposition mechanisms of textiles and foam are markedly changed by plastic in the co-pyrolysis process, but the effect is not large for rubber and leather. This effect is mainly reflected in the pyrolysis temperature and pyrolysis rate. The pyrolytic trend and conversion curve shape of the studied ASR can be predicted by the main polymeric components with a parallel superposition model. The pyrolytic product yields and characterizations of gaseous products were analyzed in laboratory-scale non-isothermal pyrolysis experiments at finished temperatures of 500 °C, 600 °C, and 700 °C. The results prove that the yields of pyrolytic gas products are determined by the thermal decomposition of organic substances in the ASR and final temperature.

Cite

CITATION STYLE

APA

Yang, B., & Chen, M. (2020). Influence of interactions among polymeric components of automobile shredder residue on the pyrolysis temperature and characterization of pyrolytic products. Polymers, 12(8). https://doi.org/10.3390/POLYM12081682

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free