The flow-matching problem of hydraulic systems is an important factor affecting the working performance and energy saving of hydraulic systems. According to the different flow-matching mechanisms, the flow-matching technology of hydraulic systems can be divided into three categories: positive flow-control technology, negative flow-control technology, and load-sensitive control technology. In this paper, the working mechanism of flow-matching technology and the cause of energy loss are analyzed, and the research results of flow matching are introduced from two aspects of energy saving and consumption reduction and system performance improvement. In the direction of energy saving and consumption reduction, the purposes of energy saving and consumption reduction are achieved by means of multi-way valve commutation, independent inlet and outlet control, parallel replacement of shuttle valve by a cylinder piston rod controlled by pilot pressure, change of hydraulic resistance of a pressure compensating valve, improvement of the power regulation range of a hydraulic pump, and potential energy recovery. In the direction of system performance, by means of flow-forecasting system pressure change, applying flow unsaturation real-time control idea, and combining electronic control technology with load-sensitive technology, the pressure drop during transmission process and the transmission signal lag are reduced, the speed regulation interval is enlarged, fine-tuning characteristics are improved, and the response speed is increased. The research results indicate that improving the structure and the control strategy of hydraulic systems and improving the flow-matching degree of a system to achieve global matching will be a future development trend.
CITATION STYLE
Li, R., Sun, Q., Ding, X., Zhang, Y., Yuan, W., & Wu, T. (2022, December 1). Review of Flow-Matching Technology for Hydraulic Systems. Processes. MDPI. https://doi.org/10.3390/pr10122482
Mendeley helps you to discover research relevant for your work.